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Working with point 
clouds
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Analysing raw point clouds
1. Simple data
2. Accurate
3. Fully 3D 
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Oliver Kreylos [https://www.youtube.com/watch?v=cyoJKbzqpZA]

https://www.youtube.com/watch?v=cyoJKbzqpZA


3D Skeleton
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Applications

Chapter 4 Generalization of a DTM surface through skeleton retraction of 2D slices 69

of a ridge is a leaf of the skeleton. The set of leaves defines a three dimensional feature -

ridge (Figure 4.9).

Ridge

Figure 4.9: Perspective views of an example DTM showing a ridge.

Construction of a vertical parent-child hierarchy between leaf skeleton branches can be

performed similarly to the construction of a hill. The skeleton leaves if they lie close to

each other in the vertical projection to the XY plane form a vertical path topologically

related to the ridge line.
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Figure 4.10: Construction of the parent child relationship for contour lines representing a ridge:
source contour lines with their skeletons (a), two ridge lines (b) and the vertical paths
defining skeleton relationships for the ridges (c).

An example of such a hierarchy is presented in Figure 4.10. A single hill from the model

is considered here. The hill contains two major ridge lines marked in blue in Figure 4.10

(b). At the same time, for the contour lines a vertical hierarchy can be constructed forming

the sequence ABCDEFG. As can be seen in the figure the skeletons of the contour lines

are composed of one polyline. Assuming that there exists a ”root” point on the skeleton,

two branches are created. The two branches are leaves of the skeleton and together with

leaves from other skeletons form two vertical hierarchies. Each of the two hierarchies is

related to one of the ridge lines. The sequence A1 . . .G1 (Figure 4.10 (c)) exists owing to
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Tam & Heidrich, 2003

Matuk, 2006

Dakowicz & Gold, 2003

Dey et al., 2001 
Berger & Silva, 2012 



Hypotheses
Medial Axis Transform (MAT) of LiDAR point 
cloud:
1. enables truly 3D analysis

2. can be used to effectively define features in 
point clouds using its geometry and topology
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MAT approximation
Shrinking ball 
algorithm 
(Ma et al., 2012)
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MAT approximation
Shrinking ball 
algorithm 
(Ma et al., 2012)
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image by Ron Nijhuis & Marc Post, Kadaster

Current goal

Simplification of LiDAR point clouds:
Reduce number of points while maintaining detail.

E.g. for visualisation, creation 3DTOP10NL
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Local Feature Size (LFS)
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LFS simplification

15



LFS simplification
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LFS simplification
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LFS simplification
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LFS simplification
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LFS simplification
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Original points

Hoogtebestand Rotterdam 2012



LFS simplification
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LFS simplified to 25%
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Results
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Reduced to 11%

Hoogtebestand Rotterdam 2012

LFS
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Point splatting
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LFS Point splatting
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LFS point splatting
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LFS point splatting
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What is next?

1. Segmentation
2. Classification
3. High level feature detection
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