Het 3D skelet van een puntenwolk

TUDelft

AHN/NCG studiemiddag Amersfoort, 28 januari 2015

Ravi Peters

<u>3dgeoinfo.bk.tudelft.nl</u>

read more

Working with point clouds

Analysing raw point clouds

Simple data
Accurate
Fully 3D

Oliver Kreylos [https://www.youtube.com/watch?v=cyoJKbzqpZA]

- 3D Skeleton

Hypotheses

Medial Axis Transform (MAT) of LiDAR point cloud:

- I. enables truly **3D** analysis
- 2. can be used to effectively **define features** in point clouds using its **geometry** and **topology**

Current goal

Simplification of LiDAR point clouds:

Reduce number of points while maintaining detail.

E.g. for visualisation, creation 3DTOPIONL

image by Ron Nijhuis & Marc Post, Kadaster

17

Hoogtebestand Rotterdam 2012

Original points

18

LFS simplified to 25%

Results

Reduced to 11%

LFS

Local feature size simplification (linear)

Local feature size simplification (quadratic)

Random point thinning

Point splatting

LFS Point splatting

Simple points

Splats

LFS point splatting

LFS point splatting

What is next?

- I. Segmentation
- 2. Classification
- 3. High level feature detection

<u>3dgeoinfo.bk.tudelft.nl</u>

read more

<u>3dgeoinfo.bk.tudelft.nl</u>

3dgeoinfo.bk.tudelft.nl

about

Department of Urbanism, Faculty of Architecture and the Built Environment, Delft University of Technology

Latest news 🔊

Release of Solar3Dcity 19 Jan 2015

••• < > 🗉 🛆

TUDelft

0

We are happy to announce the release of Solar3Dcity, an open-source utility for the estimation of the yearly solar irradiance of buildings stored in CityGML. read more

0 0

code

₫

education

Ċ

projects

publications

References

- Amenta, Nina, Marshall Bern, and Manolis Kamvysselis. 1998. A new Voronoi-based surface reconstruction algorithm. In *Proceedings of the 25th annual conference on Computer graphics and interactive techniques*, 415–421. SIGGRAPH '98. New York, NY, USA: ACM.
- Dominique Attali and Annick Montanvert. Modeling noise for a better simplification of skeletons. In *Image Processing, 1996. Proceedings., International Conference on,* volume 3, pages 13–16. IEEE, 1996.
- Tamal K. Dey, Joachim Giesen, and James Hudson. Decimating samples for mesh simplification. In *Proc.* 13th Canadian Conf. Comput. Geom, pages 85–88, 2001.
- Jaehwan Ma, Sang Won Bae, and Sunghee Choi. 3D medial axis point approximation using nearest neighbors and the normal field. *The Visual Computer*, 28(1):7–19, 2012.
- Krzysztof Matuk. Feature-based terrain model simplification. PhD thesis, Hong Kong Polytechnic University, 2006.
- Roger Tam and Wolfgang Heidrich. Shape simplification based on the medial axis transform. In *Visualization, 2003.* IEEE, pages 481–488, 2003.
- Berger, Matthew and Silva Claudio T. Medial Kernels. *Computer Graphics Forum,* volume 31: pages 795–804, 2012
- Pfister, Hanspeter and Zwicker, Matthias and Van Baar, Jeroen and Gross, Markus. Surfels: Surface elements as rendering primitives. In *Proceedings of the 27th annual conference on Computer graphics and interactive techniques*, 335–342, 2000.